Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
2.
J Headache Pain ; 25(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565987

RESUMO

BACKGROUND: Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS: We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1ß, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS: At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS: Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.


Assuntos
Benzofuranos , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio , Fotofobia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Nitroglicerina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
3.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587319

RESUMO

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Assuntos
Canabidiol , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Dopamina/farmacologia , Apelina/metabolismo , Apelina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Hipocampo/metabolismo , Expressão Gênica
4.
Zhen Ci Yan Jiu ; 49(3): 256-264, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500322

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) on behavior, oxidative stress factors in colon and substantia nigra of Parkinson's disease (PD) mice, so as to explore the mechanism of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into blank, model and EA groups, with 12 mice in each group. The PD mouse model was established by continuous gavage of rotenone for 4 weeks. Mice in the EA group received EA (2 Hz/15 Hz) at "Baihui" (GV20), "Quchi" (LI11) and "Zusanli" (ST36) for 20 min, 5 days a week for 2 weeks. After intervention, gait analysis was used to evaluate the motor ability and motor coordination. Ink propulsion rate was used to evaluate the intestinal transport function. The level of reactive oxygen species (ROS) in the colon was detected by flow cytometry. The contents of total protein (TP), malondialdehyde (MDA) and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) in colon and substantia nigra were detected by ELISA. The expression of nuclear factor E2-related factor 2 (Nrf2) in substantia nigra was detected by immunofluorescence staining. RESULTS: Compared with the blank group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed and maximum intensity of the maximum contact area of mice in the model group were decreased (P<0.000 1, P<0.01, P<0.001), the maximum change rate of gait was increased (P<0.001) in the model group. The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, and the positive expression of Nrf2 in substantia nigra were decreased (P<0.000 1, P<0.01, P<0.05), while the fluorescence intensity of ROS in the colon, the contents of MDA in colon and substantia nigra were increased (P<0.01). Compared with the model group, the average speed, step rate, normal step ratio, distance between the front and hind feet, stride length, swing speed, and maximum intensity of the maximum contact area of the mice in the EA group were increased (P<0.01, P<0.05, P<0.001, P<0.000 1), the maximum change rate of gait was decreased (P<0.01). The intestinal propulsion rate, the activities of GSH-Px and SOD in the colon and substantia nigra, the positive expression of Nrf2 in substantia nigra were increased (P<0.001, P<0.05, P<0.000 1), while the ROS fluorescence intensity in the colon, the MDA contents in the colon and substantia nigra were decreased (P<0.01). CONCLUSIONS: EA can improve the movement disorder, gait disorder and intestinal motor function of PD mice, and protect dopaminergic neurons from damage, which may be related to its effect in antagonistic brain-gut oxidative stress.


Assuntos
Eletroacupuntura , Doença de Parkinson , Ratos , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Substância Negra/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Anticorpos
5.
Hear Res ; 445: 108995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518393

RESUMO

OBJECTIVE: The genotype-phenotype relationship in cisplatin-induced ototoxicity remains unclear. By assessing early shifts in distortion product otoacoustic emission (DPOAE) levels after initial cisplatin administration, we aimed to discriminate patients' susceptibility to cisplatin-induced ototoxicity and elucidate their genetic background. STUDY DESIGN: A prospective cross-sectional study. SETTING: Tertiary referral hospital in Japan. PATIENTS: Twenty-six patients with head and neck cancer were undergoing chemoradiotherapy with three cycles of 100 mg/m2 cisplatin. INTERVENTIONS: Repetitive pure-tone audiometry and DPOAE measurements, and blood sampling for DNA extraction were performed. Patients were grouped into early ototoxicity presence or absence based on whether DPOAE level shifts exceeded the corresponding reference limits of the 21-day test interval. MAIN OUTCOME MEASURES: Hearing thresholds after each cisplatin cycle, severity of other adverse events, and polymorphisms in cisplatin-induced ototoxicity-associated genes were compared. RESULTS: Early ototoxicity was present in 14 and absent in 12 patients. Ototoxicity presence on DPOAEs was associated with greater progression of hearing loss in frequencies ≥2 kHz throughout therapy and with higher ototoxicity grades compared with ototoxicity absence. Ototoxicity was further associated with grade ≥2 nausea. Ototoxicity presence was genetically associated with the GSTT1 null genotype and G-allele of NFE2L2 rs6721961, whereas ototoxicity absence was associated with the GSTM1 null genotype. Dose-dependent progression of hearing loss was the greatest in the combined genotype pattern of GSTT1 null and the T/G or G/G variants of rs6721961. CONCLUSION: Early DPOAE changes reflected genetic vulnerability to cisplatin-induced ototoxicity. Hereditary insufficiency of the antioxidant defense system causes severe cisplatin-induced hearing loss and nausea.


Assuntos
Cisplatino , Perda Auditiva , Fator 2 Relacionado a NF-E2 , Ototoxicidade , Humanos , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Estudos Transversais , Surdez/induzido quimicamente , Perda Auditiva/induzido quimicamente , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Náusea/induzido quimicamente , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/farmacologia , Emissões Otoacústicas Espontâneas , Ototoxicidade/etiologia , Ototoxicidade/genética , Polimorfismo Genético , Estudos Prospectivos
6.
Acta Vet Hung ; 72(1): 41-50, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38536404

RESUMO

The study aimed to evaluate the effect of curcumin (CURC) supplementation on broiler chickens exposed to ochratoxin A (OTA), by examining biochemical parameters and the expression of glutathione redox system genes and their regulation. OTA reduced glutathione content in the liver while increasing glutathione peroxidase activity. CURC showed no significant effects. Kidney parameters remained mostly unaffected. Gene expression analysis revealed OTA-induced upregulation of KEAP1, NRF2, AHR, GPx4 and GSR genes in the liver. CURC supplementation led to the upregulation of GPx4 and AHR genes with OTA+CURC treatment, resulting in the downregulation of GPx4, KEAP1, NRF2 and AHR genes compared to OTA treatment alone. In the kidney, GPx4 was downregulated, and NRF2 and AHR were upregulated as an effect of OTA, while CURC upregulated the NRF2 gene only. OTA+CURC treatment led to the downregulation of GPx4, GSS and AHR genes compared to the control and downregulation of NRF2 and AHR genes compared to OTA. The results suggested that CURC is partly effective against OTA-induced oxidative stress and that the effect of OTA and CURC on the antioxidant response is regulated through the KEAP1-NRF2-ARE and AHR pathways.


Assuntos
Galinhas , Curcumina , Ocratoxinas , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Galinhas/genética , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Rim , Glutationa/metabolismo , Fígado , Expressão Gênica
7.
Allergol Immunopathol (Madr) ; 52(2): 16-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459886

RESUMO

BACKGROUND: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. METHODS: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1ß, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. RESULTS: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1ß, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH. Moreover, IK treatment with a dose of 10 mg/kg activated the nuclear factor erythroid 2-related factor 2-heme oxygenase-1 (Nrf2-HO-1) pathway by enhancing the protein expressions of Nrf2 and HO-1. CONCLUSION: This study demonstrates that IK could mitigate the inflammatory response and oxidative stress associated with sepsis-induced ALI, supporting IK as a promising therapeutic agent for the treatment of sepsis-associated ALI.


Assuntos
Lesão Pulmonar Aguda , Furanos , Cetonas , Sepse , Camundongos , Animais , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Pulmão/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Estresse Oxidativo , Interleucina-6/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
8.
Discov Med ; 36(181): 266-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409832

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common disease that causes pain to many older adults. Because the pathogenesis is not fully elucidated, effective drug therapies are currently lacking. This study aimed to determine how salidroside (Sal)-mediated reduction of osteoarthritis development in mice worked and to identify the underlying mechanism. METHODS: Using in vitro experiments, ATDC5 cells were treated with various concentrations of Sal and interleukin (IL)-1ß for 24 hours to mimic OA. An enzyme-linked immunosorbent assay (ELISA) was conducted to detect the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Western blotting was performed to observe the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. In in vivo experiments, pathological examination was used to assess the effects of Sal on alleviating OA progression in mice. Nrf2 signaling and its downstream proteins were further tested by immunofluorescence analysis. RESULTS: The results showed that both pro-inflammatory cytokines and ROS were significantly reduced following Sal treatment in a concentration-dependent manner. Western blotting revealed that Sal could inhibit the expression of the NF-κB/hypoxia-inducible factor-2α pathway and activate the Nrf2/heme oxygenase-1 pathway. In vivo experiments showed that the cartilage surface in the saline-treated group eroded to a greater extent than the Sal-treated groups (p < 0.001). Immunohistochemistry analysis revealed that matrix metallopeptidase (MMP) 9, MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) decreased expression level. In contrast, collagen-II and aggrecan increased in the Sal-treated groups compared to the saline-treated group. CONCLUSIONS: Our findings indicate that Sal can alleviate OA progression by promoting anti-oxidant expression and inhibiting degradation enzyme expression. These findings suggest that Sal inhibits the NF-κB pathway and its downstream targets through up-regulating the Nrf2 pathway.


Assuntos
Condrócitos , Glucosídeos , Osteoartrite , Fenóis , Camundongos , Animais , Condrócitos/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Interleucina-1beta/farmacologia , Interleucina-1beta/uso terapêutico , Espécies Reativas de Oxigênio , Anti-Inflamatórios , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico
9.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 261-267, 2024 Feb 06.
Artigo em Chinês | MEDLINE | ID: mdl-38387960

RESUMO

This study explores the effects and possible mechanisms of nuclear factor E2 related factor 2 (NRF2) on ovarian granulosa cells, providing a scientific basis to prevent premature ovarian failure. An ovarian cell injury model was constructed by treating human ovarian granulosa cell (KGN cell) with 4-Vinylcyclohexene dioxide (VCD). Firstly, KGN cells were treated with different concentrations of VCD, and cell counting kit 8 (CCK-8) was used to detect ovarian cell proliferation. After determining IC50 by CCK8, the levels of estradiol and progesterone in the cell supernatant were detected using enzyme-linked immunosorbent assay (ELISA), reactive oxygen species (ROS) assay kit was used to detect the content of ROS in ovarian cells, real-time fluorescence quantitative polymerase chain reaction (qRT PCR) was used to detect the mRNA expression level of NRF2, and Western blot was used to detect the protein expression level of NRF2. Further, NRF2 silence (siNRF2) and overexpression (NRF2-OE) cell models were constructed through lentivirus transfection, and the effects of regulating NRF2 on VCD treated cell models were investigated by detecting hormone levels, oxidative stress indicators (ROS, SOD, GSH-Px), and autophagy (LC3B level). The results showed that VCD intervention inhibited the proliferation of ovarian granulosa cells in a time-dependent and dose-dependent manner (F>100, P<0.05), with an IC50 of 1.2 mmol/L at 24 hours. After VCD treatment, the level of estradiol in the cell supernatant decreased from (56.32±10.18) ng/ml to (24.59±8.75) ng/ml (t=5.78, P<0.05). Progesterone decreased from (50.25±7.03) ng/ml to (25.13±6.67) ng/ml (t=6.54, P<0.05). After VCD treatment, the SOD of cells decreased from (44.47±7.71) ng/ml to (30.92±4.97) ng/ml (t=3.61, P<0.05). GSH-Px decreased from (68.51±10.17) ng/ml to (35.19±6.59) ng/ml (t=5.73, P<0.05). Simultaneously accompanied by an increase in autophagy and a decrease in NRF2. This study successfully constructed KGN cell models that silenced NRF2 and overexpressed NRF2. Subsequently, this study treated each group of cells with VCD and found that the cell proliferation activity of the siNRF2 group was significantly reduced (t=8.37, P<0.05), while NRF2-OE could reverse the cell activity damage caused by VCD (t=3.37, P<0.05). The siNRF2 group had the lowest level of estradiol (t=5.78, P<0.05), while NRF2-OE could reverse the decrease in cellular estradiol levels caused by VCD (t=5.58, P<0.05). The siNRF2 group had the lowest progesterone levels (t=3.02, P<0.05), while NRF2-OE could reverse the decrease in cellular progesterone levels caused by VCD (t=2.41, P<0.05). The ROS level in the siNRF2 group was the highest (t=2.86, P<0.05), NRF2-OE could reverse the increase in ROS caused by VCD (t=3.14, P<0.05), the SOD enzyme content in the siNRF2 group was the lowest (t=2.98, P<0.05), and NRF2-OE could reverse the decrease in SOD enzyme content caused by VCD (t=4.72, P<0.05). The GSH-Px enzyme content in the siNRF2 group was the lowest (t=3.67, P<0.05), and NRF2-OE could reverse the decrease in antioxidant enzyme content caused by VCD (t=2.71, P<0.05). The LC3B level was highest in the siNRF2 group (t=2.45, P<0.05), and NRF2-OE was able to reverse the LC3B elevation caused by VCD (t=9.64, P<0.05). In conclusion, NRF2 inhibits ROS induced autophagy, thereby playing a role in reducing ovarian granulosa cell damage, which may be a potential target for premature ovarian failure.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Ovariana Primária , Feminino , Humanos , Autofagia , Estradiol/metabolismo , Estradiol/farmacologia , Células da Granulosa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Insuficiência Ovariana Primária/metabolismo , Progesterona/metabolismo , Progesterona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
10.
Microsc Res Tech ; 87(6): 1348-1358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380581

RESUMO

Wear particle-induced periprosthetic osteolysis is the key to aseptic loosening after artificial joint replacement. Osteoclastogenesis plays a central role in this process. Apelin-13 is a member of the adipokine family with anti-inflammatory effects. Here, we report that apelin-13 alleviates RANKL-mediated osteoclast differentiation and titanium particle-induced osteolysis in mouse calvaria. Mechanistically, apelin-13 inhibits NLRP3 inflammasome-mediated pyroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In summary, apelin-13 is expected to be a potential drug for relieving aseptic osteolysis. RESEARCH HIGHLIGHTS: This study reveals the molecular mechanism by which apelin-13 inhibits NLRP3 inflammasome activation and pyroptosis by promoting Nrf2. This study confirms that apelin-13 alleviates osteoclast activation by inhibiting pyroptosis. In vivo studies further confirmed that apelin-13 alleviated mouse skull osteolysis by inhibiting the activation of NLRP3 inflammasome.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Osteoclastos , Osteólise , Animais , Camundongos , Osteoclastos/metabolismo , Osteólise/induzido quimicamente , Osteólise/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Piroptose , Titânio/farmacologia , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL
11.
Iran J Immunol ; 21(1): 37-52, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38314669

RESUMO

Background: The imbalance between M1 and M2 macrophage activation is closely associated with the pathogenesis of inflammatory bowel diseases (IBDs). Sulforaphane (SFN) plays an important role in the treatment of inflammatory diseases. Objective: To investigate the effect of SFN on macrophage polarization and its underlying regulatory mechanism. Methods: Mouse bone marrow-derived macrophages (BMDMs) were treated with SFN and an Nrf2 inhibitor, Brusatol. M1 macrophages were induced by LPS and IFN-γ stimulation, whereas M2 macrophages were induced by stimulation with IL-4 and IL-13. LPS-stimulated BMDMs were co-cultured with Caco-2 cells. Flow cytometry, qRT-PCR, and Western blot were performed to assess macrophage polarization. Cell function was assessed using CCK8 assay, transepithelial electrical resistance (TEER) assay, and biochemical analysis. Results: Higher concentrations of SFN resulted in better intervention effects, with an optimal concentration of 10 µM. SFN decreased the levels of IL-12, IL-6, and TNF-α, as well as the percentages of CD16/32 in M1 BMDMs. At the same time, SFN increased the levels of YM1, Fizz1, and Arg1 as well as the percentages of CD206+ cells in M2 BMDMs. In addition, SFN enhanced the accumulation of Nrf2, NQO1, and HO-1 in M1 BMDMs, and the downregulation of Nrf2 reversed the regulatory effect of SFN on M1/M2 macrophages. LPS-stimulated BMDMs induced Caco-2 cell damage, which was partially alleviated by SFN. Conclusion: Our findings indicate that SFN may act as an Nrf2 agonist to regulate macrophage polarization from M1 to M2. Furthermore, SFN may represent a potential protective ingredient against IBD.


Assuntos
Isotiocianatos , Lipopolissacarídeos , Ativação de Macrófagos , Sulfóxidos , Camundongos , Humanos , Animais , Células CACO-2 , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Macrófagos
12.
Skin Res Technol ; 30(2): e13582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38282275

RESUMO

BACKGROUND: Increasing amounts of ultraviolet radiation occur as ozone depletion causes the earth's ozone layer to be destroyed, making antioxidant efficacy a research hotspot. Previous studies on plum blossom have mostly focused on Volatile Oils, Flavonoids, Phenylpropanoids, and other compounds, whereas few studies have focused on low molecular weight polypeptide (LMWP) of plum blossom. This research provides a reference for the deep processing and utilization of plum blossom. OBJECTIVES: (a) Plum blossom low molecular weight polypeptides protect HaCaT cells against UVB-induced oxidative damage in vitro and the underlying mechanism. (b) Improve the theoretical basis for the intense processing and utilization of plum blossom. METHODS: The safe concentration of LMWP and the survival rate of HaCaT cells were determined using the CCK-8 experiment. The fluorescence intensity of reactive oxygen species (ROS) was identified using the dichlorofluorescin diacetate (DCFH-DA) method; Superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations were measured in ruptured cells; Western blot analysis was used to examine the expression levels of three proteins: nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and benzoquinone oxidoreductase 1 (NQO-1). RESULTS: It was noted that a certain concentration of LMWP could promote cell proliferation. In oxidatively damaged HaCaT cells, SOD levels and survival rates were markedly reduced, but ROS and MDA levels were elevated. However, after treatment with LMWP, the survival rate of the cells and SOD levels were markedly increased, and the levels of ROS and MDA were markedly decreased. As shown by Western blotting, the model group exhibited lower levels of Nrf2, HO-1, and NQO-1 expression than the control group, whereas LMWP-treated cells had significantly higher levels of Nrf2, HO-1, and NQO-1 expression than their model-treated counterparts. CONCLUSIONS: LMMP can effectively protect HaCaT cells against oxidative damage in vitro induced by UVB, and the underlying mechanism is linked to the activation of the transcription factor Nrf2.


Assuntos
Células HaCaT , Prunus domestica , Humanos , Espécies Reativas de Oxigênio , Prunus domestica/metabolismo , Raios Ultravioleta/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Peso Molecular , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Peptídeos/metabolismo
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 74-81, 2024 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-38225845

RESUMO

Objective: To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats. Methods: Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 µmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor ß 1 (TGF-ß 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ. Results: The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 µmol/L ( P<0.05), so 4 µmol/L and 8 µmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-ß 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 µmol/L and 8 µmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression. Conclusion: VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.


Assuntos
Condrócitos , Dipeptídeos , Osteoartrite , para-Aminobenzoatos , Ratos , Animais , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Colágeno Tipo II/metabolismo , Interleucina-6 , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
14.
Microbiol Spectr ; 12(2): e0327923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38169293

RESUMO

Endometritis, a local inflammatory disease, has been known as the most common cause of infertility in mares. In this study, we investigated the protective effects of luteolin on endometritis induced by Staphylococcus aureus (S. aureus) and further clarified the possible molecular mechanisms. An S. aureus-induced endometritis model was established by the infusion of S. aureus into the uterus. Luteolin was intraperitoneally administered to mice 1 h before S. aureus treatment. The results showed that the mice of the S. aureus group showed severe histological changes of uterine tissues, increased myeloperoxidase (MPO) activity, and elevated TNF-α, IL-1ß, and IL-6 levels. These changes induced by S. aureus were dose-dependently inhibited by luteolin. Furthermore, luteolin inhibited MDA and Fe2+ production and increased the production of GSH decreased by S. aureus. Luteolin prevented S. aureus-induced endometrial barrier disruption through up-regulating ZO-1 and occludin expression. Luteolin dramatically inhibited S. aureus-induced NF-κB activation. The expression of Nrf2 and HO-1 was increased by luteolin. In addition, the inhibitory effects of luteolin on S. aureus-induced endometritis were reversed in Nrf2 knockdown mice. In conclusion, these data indicated that luteolin protected mice against S. aureus-induced endometritis through inhibiting inflammation and ferroptosis via regulating the Nrf2 signaling pathway.IMPORTANCEEndometritis is an inflammatory disease of the endometrium, which is a common gynecological disease. Up to now, there is no evidence for the protective effects of luteolin on endometritis. The purpose of this study was to investigate whether luteolin has protective effects against S. aureus-induced endometritis and attempts to clarify the mechanism.


Assuntos
Endometrite , Ferroptose , Infecções Estafilocócicas , Humanos , Animais , Feminino , Cavalos , Camundongos , Endometrite/induzido quimicamente , Endometrite/patologia , Staphylococcus aureus , Luteolina/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação , Transdução de Sinais
15.
Int J Hematol ; 119(3): 303-315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245883

RESUMO

Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of ß5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of ß5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases
16.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38227823

RESUMO

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Assuntos
Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Reperfusão/efeitos adversos , Estresse Oxidativo
17.
Curr Stem Cell Res Ther ; 19(3): 389-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37183461

RESUMO

BACKGROUND: This study employed a severed finger rat model to analyze the effects of human mesenchymal stem cells (MSCs) on angiogenesis, inflammatory response, apoptosis, and oxidative stress, to evaluate the possible mechanism of the repair effect of MSCs on severed finger (SF) rats. METHODS: Sixty Sprague-Dawley (SD) rats were categorized into five groups (n = 12). The pathological changes of severed finger tissues were investigated by Hematoxylin and eosin (H&E) staining on day 14 after the rats were sacrificed. The levels of inflammatory factors and oxidative stress factors were detected by ELISA. Terminal Deoxynucleotidyl Transferase (TdT) dUTP Nick End Labeling (TUNEL) was employed to assess the apoptosis of chondrocytes in severed finger tissues. The expression of osteocalcin (OCN), osteopontin (OPN), Collagen I (Col-1), and CD31 were detected by immunohistochemistry or immunofluorescence assay, respectively. The expression levels of related proteins were determined by western blot. RESULT: Our study presented evidence that MSCs treatment improved pathological changes of skin and bone tissue, diminished the inflammatory response, prevented oxidative stress injury, suppressed chondrocyte apoptosis, and promoted angiogenesis, and bone formation compared to the model group. In addition, EX527 treatment attenuated the effect of MSCs, SRT1720 and ML385 co-treatment also attenuated the effect of MSCs. Importantly, the MSCs treatment increased the expression of Sirtuin 1(SIRT1)/Nuclear factor erythroid2-related factor 2(Nrf2) relate proteins. CONCLUSION: Our study indicated that the mechanism of the effect of MSCs on a severed finger was related to the SIRT1/ Nrf2 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Sirtuína 1 , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Osteogênese , Transdução de Sinais , Apoptose , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo
18.
Adv Healthc Mater ; 13(4): e2302485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902093

RESUMO

The use of oxidoreductase nanozymes to regulate reactive oxygen species (ROS) has gradually emerged in periodontology treatments. However, current nanozymes for treating periodontitis eliminate ROS extensively and non-specifically, ignoring the physiological functions of ROS under normal conditions, which may result in uncontrolled side effects. Herein, using the MIL-47(V)-F (MVF) nanozyme, which mimics the function of glutathione peroxidase (GPx), it is proposed that ROS can be properly regulated by specifically eliminating H2 O2 , the most prominent ROS. Through H2 O2 elimination, MVF contributes to limiting inflammation, regulating immune microenvironment, and promoting periodontal regeneration. Moreover, MVF stimulates osteogenic differentiation of periodontal stem cells directly, further promoting regeneration due to the vanadium in MVF. Mechanistically, MVF regulates ROS by activating the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promotes osteogenic differentiation directly through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. A promising periodontitis therapy strategy is presented using GPx-mimicking nanozymes through their triple effects of antioxidation, immunomodulation, and bone remodeling regulation, making nanozymes an excellent tool for developing precision medicine.


Assuntos
Periodontite , Transdução de Sinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Osteogênese , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Regeneração Óssea , Periodontite/tratamento farmacológico
19.
Ann Biomed Eng ; 52(3): 671-681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044413

RESUMO

Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a transcription factor that serves as a master regulator of anti-inflammatory agents, phase I xenobiotic, and phase II antioxidant enzymes, all of which provide a cytoprotective role during disease progression. We hypothesized that oral administration of a purported phytochemical Nrf2-activator, PB125®, would increase long bone strength in aging Hartley guinea pigs, a model prone to musculoskeletal decline. Male (N = 56) and female (N = 56) guinea pigs were randomly assigned to receive daily oral treatment with either PB125® or vehicle control. Animals were treated for a consecutive 3-months (starting at 2-months of age) or 10-months (starting at 5-months of age) and sacrificed at 5-months or 15-months of age, respectively. Outcome measures included: (1) ANY-maze™ enclosure monitoring, (2) quantitative microcomputed tomography, and (3) biomechanical testing. Treatment with PB125® for 10 months resulted in increased long bone strength as determined by ultimate bending stress in female Hartley guinea pigs. In control groups, increasing age resulted in significant effects on geometric and structural properties of long bones, as well as a trending increase in ultimate bending stress. Furthermore, both age and sex had a significant effect on the geometric properties of both cortical and trabecular bone. Collectively, this work suggests that this nutraceutical may serve as a promising target and preventive measure in managing the decline in bone mass and quality documented in aging patients. Auxiliary to this main goal, this work also capitalized upon 5 and 15-month-old male and female animals in the control group to characterize age- and sex-specific differences on long bone geometric, structural, and material properties in this animal model.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Animais , Feminino , Cobaias , Masculino , Osso e Ossos , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Osteoartrite/prevenção & controle , Microtomografia por Raio-X , Modelos Animais de Doenças
20.
Int J Environ Health Res ; 34(1): 611-624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36682065

RESUMO

Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.


Assuntos
Fator 2 Relacionado a NF-E2 , Paraquat , Humanos , Paraquat/toxicidade , Paraquat/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Elementos de Resposta Antioxidante , Pulmão , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...